Extremal functions for the sharp L− Nash inequality

نویسنده

  • Emmanuel Humbert
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal functions for the sharp L2− Nash inequality

This paper is in the spirit of several works on best constants problems in Sobolev type inequalities. A general reference on this subject is the recent book of Hebey [9]. These questions have many interests. At first, they are at the origin of the resolution of famous geometrical problems as Yamabe problem. More generally, they show how geometry and analysis interact on Riemannian manifolds and...

متن کامل

Sharp Constant and Extremal Function for the Improved Moser-trudinger Inequality Involving L Norm in Two Dimension

Let Ω ⊂ R 2 be a smooth bounded domain, and H 1 0 (Ω) be the standard Sobolev space. Define for any p > 1, λp(Ω) = inf u∈H 1 0 (Ω),u ≡0 ∇u 2 2 /u 2 p , where · p denotes L p norm. We derive in this paper a sharp form of the following improved Moser-Trudinger inequality involving the L p-norm using the method of blow-up analysis: sup u∈H 1 0 (Ω),∇u 2 =1 Ω e 4π(1+αu 2 p)u 2 dx < +∞ for 0 ≤ α < λp...

متن کامل

Sharp Hardy-littlewood-sobolev Inequality on the Upper Half Space

There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...

متن کامل

Some Extremal Problems for Analytic Functions

The paper mainly concerns with functions f , analytic in S : |Imz| < 1 and bounded by a constant M > 1. We state sharp estimates for supR |f ′| under the additional condition supR |f | ≤ 1. Using these estimates we deduce well-known Bernstein’s inequality and some its generalizations for entire functions of a finite type with respect to an arbitrary proximate order. Parallely we investigate als...

متن کامل

Sharp Sobolev inequalities involving boundary terms

Let (M, g) be a compact Riemannian manifold of dimension n (n ≥ 3) with smooth boundary. In [LZ], we established some sharp trace inequality on (M, g). In this paper we establish some sharp Sobolev inequalities using the method in [LZ]. For n ≥ 3, it was shown by Aubin [Au1] and Talenti [T] that, for p = 2n/(n − 2), 1 S 1 = inf R n |∇u| 2 R n |u| p 2/p u ∈ L p (R n) \ {0}, ∇u ∈ L 2 (R n) , (0.1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017